SPECIFICATION OF GUI FRAMEWORKS”

F. Losavio, F. Marchena, A. Matteo

Centro de Ingenierfa de Software Y Sistemas ISYS,
Facultad de Ciencias, Universidad Central de Venezuela,
Apdo. 47567, Los Chaguaramos 1041-A, Caracas, Venezuela
flosavio @conicit.ve / @anubis.ciens.ucv.ve, fmarchen @anubis.ciens.ucv.ve
amatteo@conicit.ve / @anubis.ciens.ucv.ve

Abstract

Interactive systems enhance the usability of the application, in the sense of providing a convenient access to
their services, allowing the user to spend less time learning the application and to produce results quickly. The
graphical user-interface is the vehicle for achieving this usability. Frameworks, or semifinished generic
architectures, have been successfully used in the development of GUI (Graphical User-Inierfaces). Besides,
multiagent models are used to describe the architecture of interactive systems. Moreover, this architecture must
reflect the paradigm of the separation between the abstract or semantic aspects of the sysiem and its presentation
to the final user. Our main goal is to present a specification of the PAC (Presentation, Abstraction, Conirol) GUI
framework. This specification, written in a pseudoformal language, is directly used to implement the GUI agents
in any object-oriented target language. In this paper, an example of a small application, a simplified graph editor,
is developed in C++, applying the specification.

Keywords: framework, graphical user-interface, multiagent model, reusable sofiware design, design
patterns, interactive system, usability, user-interface design, object-oriented programming, software
engineering

1. INTRODUCTION
Our main goal is to illustrate an experience of interactive software development [7], [8], [9], [10] using the
PAC (Presentation, Abstraction and Control) model approach [4], presenting a frarework for a PAC agent
[8] and the specification of its public abstract classes, which have been practically used for implementing
object-oriented (O0) applications. The specification is written in a pseudoformal language, and its purpose
is to serve as a general guideline for coding the concrete classes customized to the particular application,
obtained by subclassing the public abstract classes of the framework. A simplified graphical editor 1

Wy

constructed for workstations under the Unix 1/X-Window2/OSF/Motif3 platform, according to the PAC
framework specification. Part of the code of a particular interface agent (the Editor agent) is presented as an

example, to show the paractical use of the framework. The complete application code may be found at the
ISYS Center's home page: hitp:/anubis.ciens.ucv.ve/SPANISH/publicaciones97.html, and the interested
readers may retrieve and run the whole application. On the basis of our experience, we will be mostly
concerned with the PAC model, nevertheless the main differences with the well known MVC (Model-View-
Controller) model [5] are pointed out.

Beside the first introductory section, this work is structured into Section 2 concerned with the description
and specification of the PAC framework and Section 3 focused on an example to custumize the PAC
framework specification. Finally the Conclusion and an Appendix, showing the C++ code [12]
corresponding to the Presentation perspective of the Edition agent, are presented.

1.1 Patterns and frameworks

The approach to software design with patterns or templates [4] that can be applied in many different
situations, captures the experience involved in designing OO software. Patterns, at a given level of
abstraction, are descriptions of communicating objects and classes that are customized to solve a general

design problem in a particular context. A design patiern names, abstracts and identifies the key aspects of a

* This research is supported by the New Technology Program of the BID-CONICIT 1-09 Project, the CONICI
MOODe $1-9500512 Project and the CDCH OOMGRIN No. 03-13-3483-95 Project

1 Unix is a registered trademark of Unix System Laboratories.
2 X Window is a registered trademark of the Massachusetis Institute of Technology.

3 Motif is a re gistered trademark of Open Software Foundation. /

-

\O
Pt

common design structure that make it useful for creating a reusable OO design. The design pattern ideniifies
the participating classes and instances, their roles and collaborations and the distribution of responsibilities,
providing also a sample code to illustrate an implementation. In [4], C++ [12] and/or Smalltalk [5] codes
are given, and these languages have been selected on the basis of experience in the language, increase of its
popularity and the language facility of expression. Actually, some patterns can be expressed more easily in
one language than in another. A framework is defined as a reusable semifinished architecture for various
application domains [11]. It is constituted by a set of classes, that may conform several design patterns,
conceived for working together and it represents a generic subsystem that can be instantiated. The
instantiation is achieved developing subclasses from the public abstract classes of the framework, called
sometimes "hot spots". A developer using a framework must know the hot spots for a given problem and
know how to adapt them to the application's needs.

1.2 Architecture of Interactive Systems

Interactive systems allow a high degree of user interaction through their graphical user-interface, enhancing
the usability of the application, in the sense of providing a convenient access to their services, allowing the
user to spend less time learning the application, to produce results more quickly [1]. The architecture of
interactive systems must reflect the paradigm of the separation between the abstract or semantic aspects
(functional core) of the system and its presentation. Usually the core does not change much in time,
remaining relatively stable. User-interfaces, however, are often subject to change and adaptation. For
example, systems may have to support different user-interface standards, customer-specific "look and feel"
metaphors, or interfaces that must be adjusted to fit into a customer's business processes. The system's
architecture must support the adaptation of the user-interface without causing major effecis to the
application specific functionality or the underlying data model.

1.3 Multiagemt Model

The multiagent model [3], [5] is used to structure the architecture of interactive systems. It is inspired from
the stimuli-answers systems, which are organized as a set of cooperating agents, reacting at external events
(stimuli) and generating events (answers). An event or stimulus is of a certain kind, it holds some
information depending on its kind, it is produced by an emissary and received by a receptor. An agent may
be seen as a processor, with receptors and emissaries for capturing and producing events. It is constituted by
a two level memory, one to register detected events, the other to memorize a state, and it is characterized by
a modular organization, paraliel execution of processes and eveni-driven communications. This mode! adds
another dimension, the parallelism, to the traditional models used in the construction of graphical user-
interfaces for interactive systems. Notice that the basic OO notions are present in the agent concept: a class
and its instances may define a category of agents; the operations are the instructions of the processor, the
atiributes constitute the memory elements, modeling the agent's state. The constraints (e.g. preconditions
reacting to the activation of an operator) specify the semantics of the processor's instructions. Moreover,
agents may be connected by inheritance and/or association relations. An important issue of the multiagent
model, as for the OO paradigm, is that an agent defines the granularity and modularity of the system. It is
then possible to modify a behaviour without compromising the whole system. The agents we are interested
in are called interface agents, since they are responsible of capturing man-machine interaction.

Frameworks have been successfully used in the development of graphical user-interfaces. The MVC (Model-
View-Controller) model [5] for building graphical user-interfaces (GUI) is actually considered one of the first
known frameworks [7]. Two basic frameworks are used for implementing multiagent models, providing a
fundamental structural organization for the architecture of interactive software systems: - The Model-View-
Coniroller (MVC), which models an interactive application as three separate components or perspectives,
the model, contzining the core functionality and data; the view, displaying or presenting information to the
user and the conitroller for handling user inputs. Views and controllers together constitute the user-interface.
Consistency between the view-controller pair and the model is ensured by a change-propagation mechanism.
- The Presentation-Absiraction-Control (PAC) [3], which structures the system in a hierarchy of
cooperating interface agent. Each agent is responsible for a specific aspect of the application's functionality
and consists also of three perspectives, the preseniation corresponding to the user-interface or MVC view-
controller pair, the abstraction or MVC model and the control, which is responsible for the consistency

792

between the presentation and the abstraction and for communicating the PAC agenis. Moreover, PA(
agenis model the whole interactive system, because the higher level in the hierarchy of agents is constitus
by a special top agent representing the whole application. Its absiraction corresponds to the functional cor
and data model of the system. The intermediate levels are constituted by the agents representing the
windows and subwindows of the system GUL The inferior level corresponds o elementary PAC
which can be implemented directly reusing particular toolkit libraries. The PAC framework is pre
the next section.

2. THE PAC FRAMEWORK

Controller classes are the hot spots or public abstract classes of the framework, from which the subclasses
or concrete classes customizing a particular application are derived. The Abstractioné&Presentation abstract
class establishes the communication relationship of the Abstraction and Presentaiion classes with the
Control class, according to the PAC model principles. Three main patterns characterize the PAC model:
Mediator, Strategy and Factory Method. [1], [4], [8]. Mediator is the most relevant patiern i
because it reflects the role of the PAC conirol, in the sense of mediating for the coherence between the
presentation and the abstraction perspectives. Notice that, since a PAC agent may be decomposed in
subagents, due to the PAC agents hierarchy, each subagent has its own conirol, and nested views are treated
as subagents. The Strategy pattern is used in the same way as for MV C, attaching a view to a coniroller,
allowing to change the way a view responds to user inputs. Notice that Strategy defines a family of

vedad
volved,

situation in the presentation, with the different encapsulated treatments of the user inpuis. In I
use a dashed arrow pointing 10 the inheritance relation, instead of pointing to a particular subclass, be
at framework level, we don't know which one of the algorithmn has to be related to the partici
presentation instance. Actually, this will be known only ai the moment of instantiating the framework
a particular application. Notice also that we have added the dashed line, continuing the inheritance relation
line, meaning that there may by any number of algorithms, depending on the application. We have adopied
these slightly different notations, because the OMT [12] based notation used in [4] does not model these
situations.

Control Abstraction&
Presentation
Concreie - :
Control Abstraction Presentation
: ‘ Concrete Concrete Presentation
; ; Abstraction Presentation Controller

Concrete Concrete, Concrete
Presentation Presentation Presentation
Controller A Controller B Controller C

Figure 1. The PAC framework

|
\D

[S]

As we have seen, the graphical notation of [4] lacks semantic power, presenting ambiguities and situations
that cannot be easily modeled, since they are not expressed in a more formal language. In the next section,
we present a semiformal description of the abstract classes (hot spots) constituting the framework, written
in a pseudoformal language. We have applied in practice this description [9], [10] and we have noticed that
it is quite easy to use as a reusable design guideline for implementing the corresponding concrete classes.

2.1 THE PAC FRAMEWORK SPECIFICATION
Let A be an interface object or agent in the PAC model. Taking the definition of the PAC frameworks, whose diagram
showing the relations among the diffferent classes is shown in Figure 1, we denote:

C, the abstract class CONTROL

AP, the abstract class ABSTRACTION&PRESENTACION

A, the abstract class ABSTRACTION

P, the abstract class PRESENTATION

PC, the abstract class PRESENTATION CONTROLLER.

CC, the class CONCRETE CONTROL, ¢ an object of CC

CA, the class CONCRETE ABSTRACTION, a an object of CA

CP, the class CONCRETE PRESENTATION, p an object of CP

CPC, the class CONCRETE PRESENTATION CONTROLLER (we can have several classes of this kind,
according to the PAC framework definition)

Let Af be the parent agent of A in the model corresponding to the application, then we denote by CCy., the class
implementing the conirol perspective of agent Af. Let cf be an object of CCf.

Let Agj be an agent son i of the agent A in the PAC model corresponding to the application; then we denote by CCgj
the class implementing the conirol perspective of agent Agj. Let ¢; be an object of CCy;j .

Let £ be the set of all the classes defined by the toolkit used for developing the GUI component of the application. W
will denote a particular class belonging to Q and w an object of W.

Let us consider a disjoint partition of Q, Q =Q1 U Q2, where: Q1 represents the set of all the classes whose objects
may be composiie interface objects, such as menu, window etc.; Q2 represents the set of all the classes whose objects
are atomics or elemental interface obects, such as button, field, etc.

The symbol {, indicates that the attribute with this symbol is of reference type. Besides, we will use the standard
elements: if, and, or, not, =, &, 3, not I (meaning doesn't exist)

When the PAC framework is used to implement an interface object, we assume a specification and/or a description of
the different events that may happen on the interface object, that is to say the all the possible interactions with the
interface object. This description is assumed written in natural language as a list of all the possible events.

SPEC ABSTRACTION&PRESENTATION (SPEC AP)
e Descriptions ~Abstract class AP, superclass of classes A and P
cAtiributes:
Conirol of type |. The reference is the object ¢ € CC.
cMethods:
Put_reference
preconditiom: None
postcondition:Ifac CA,pECP,c€CC =

(at corptec)
SPEC PRESENTATION (SPEC P)
eDescription: Abstract class P (hot spot), superclass of the concrete class CP.
cAttributes:
Graphicomponent _top the type is W& Q1. This type will be indicated by the
user of the framework in the class CP.

Eventually other attributes are defined, corresponding to toolkit interface objects, required by the
interface object to be constructed. Suppose r toolkit objects are required, the following objects are

defined:
Graphicomponent_1, Graphicomponeni_2,Graphicomponent_r, where the
type of each attribute is respectively W1, W2,.. Wr, V i,
(i=l..r), WieQ
cMethods:

794 Create_presentation

precondition: dcECCand not Ip ECP
postcondition: (ApECP)and(TweEW. WEQ1)
andif(r=1 = (Y i, (i=l..0), I wi EWi))
Destroy_presentation
precondition: IpecCp
postcondition:(not 3 p €CP)and(not 3 wEW)

andif(r=zl = (Vi, (i=l..r), notd wi € Wi))
The set of operations given below must be defined for each one of the events identified in for the
corresponding interface object to be implemented.
Detect_event_i
precondition: Event i has occurred
postcondition:The method notify_event_i has been called
Notify_event_i
preconditions Event i has been detected
postcondicidon: A message to the object ¢ € CC has been sent
notifying the occurrence of event i
We also have a number g of updating operations, whose effect is an update of the presentation of the interface
objet. V i=1..,q we have
Update_i
precondition: None
postcondicidm: the corresponding update algorithm encapsulated into a
Presentation Controller Class has been called
SPEC CONTROL (SPEC C)
°Description: Abstract class C, superclass of class CC

cAttributes: ,
Cabstraction of type 1 . The reference to the object a € CA.
Cpresentation of type § . The reference to the object p € CP.
Ccontrol_father_name of type { . The reference to the object cf € CCy.
If agent A has sons, assume a certain number j, the following attributes have to be defined:
Ccontrol_son_namel, Ccontrol_son_name2,...... Ccontrol_son_name j,
each of type {, the reference to object ¢; € CCqj, ¥ 1, (i=1...j)

eMethods:

Create_control
preconditioms (3 cf€CCr) and (mot I c&CC)
postcondition:(3 c € CC)
(Fa€ CA)and(3 pe CP) and
(ifj=1= Vi, (i=1..j) 3 ¢; ECCsy)
Destroy_control
precondition: I c& CC
postcondition:notd c&€CCand
not 3(a&€ CAandp&CPand
ifj=1= Vi, (i=1.j), ¢ €CCsj)
The set of methods given below have to be defined for each one of the events identified for the corresponding

interface object to be implemented (we suppose n events, i=1..n).
Notify_abstraction_event_i
precondition: eventi has occured amd a message belonging to object c €CCris
called to verify conditions on the state of the interface objects, on
which A is dependent
postcondition: The message has been sent to object a €CA, in order
to perform a query or update its state
The PAC model establishes a hierachical architecture, where the communication among different agents,
located in different hierarchical levels, is achieved through the control perspective (CC classes
corresponding to these agents). Then we distinguish communications toward the father or sons agents.
The following methods are defined with respect to these communications:
Com_father_update_application_absiraction 7

D
Ln

precondition: None
postcondition:amessage has been sent to cf € CCr
to update the abstraction of the application
Com_father_information_state_other_agents
precondition: None
postcondition:amessage has been sent to c¢f € CCf
to ask about the state of other agents
Com_father_update_other_agents
preconditiom: None
postcondition:a message has been sent to cf € CCr
to provide information to update the state of other
agents

Com_son_name_state
preconditiomn: None

postcondition:amessage has been sent to ¢; € CCyq
to ask about the state of the Agj son agent state

Com_son_name_update
precondition: None
postcondition:amessage has been sent to ¢; €ECCq
to update the Agj son agent
SPEC ABSTRACTION (SPEC A)
eDescription: Abstract class A, superclass of class CA
°cAttributes:
Structure its type is a complex structure defined to represent the state of

the presentation perspective at each instant.
e Methods:

Create_presentation
precondition: JceCCand not Ja&CA
postcondition: JacCA
Destroy_presentation
precondition: JaecCA
postconditiomns not 3a&CA

A set of methods is available to observe the state of an object of this class. That is to say, at a given instant
the information represented in structure can be observed. Let us suppose that a certain number p of these methods
is required.
Observer i
precondition: None
postcondition:The required value is determined
A set of methods allowing to update the state of an object of this class must be defined. That is to say, structure
must be updated. Let us suppose that a certain number k of these methods is required.
Update i
preconditiomn: None
postcondition:The state of the object a € CA has been updated

SPEC PRESENTATION CONTROLLER (SPEC PC)
eDescription: Abstract class PC, superclass of a set of classes named CPC.
This class defines the name of the method with its parameters, which will be
implemented differently in each of the CPC classes defined for the interface object that
has to be implemented.
cMethods:s
Algorithm_name

3. A SIMPLE EXAMPLE ILLUSTRATING THE INSTANTIATION OF THE PAC FRAMEWORK
Let us consider a small application, a simplified graph editor for assisting researchers in graph theory. The
main goal of the system is to be used by students and researchers, for drawing graphs and computing graph
properties. Figure 2, below shows a picture of the window, with two zones: Menu, showing from left to
right, the edition facilities for graph drawing, node (circle), arc (line) and finally the exit option (square).
The drawing area, Edition, is shown with the picture of a three node graph, one already selected (node shown
in black).

796

Figure 2. Picture of the window of the Editor tool

Suppose that a three buttons mouse is available as the user-interface pointing divice, and that we want to
draw a node in the drawing area. The figure will be displayed as a consequence of the following actions,
supposing the node shape selected on the menu bar (Menu interface object) and the cursor moved to the
drawing area (Edition interface object): (A) the third mouse button is clicked and released and the figure is
displayed on the drawing area. The display of the node as a consequence of the click is implemented by an
algorithm that will be called A. Moreover, in the drawing area, the following situations may occur when
the first mouse button is clicked: (B) If the cursor is on the node, the figure will be selected; the actions
corresponding to this situation are treated by algorithm B. (C) If we are in situation (A) and the cursor is
outside the node, the figure will be deselected; algorithm C handles this situation. (D) If the cursor is
outside the node, and situation (A) has not occurred, nothing happens. Notice then that four different
situations are possible in the drawing area, which is under control of the Edirion interface object: the figure
is drawn, the figure is selecied, the figure is deselected, no action is taken, and three different algorithms
handle the relevant situations. The architecture of the system, using the PAC model, is shown in Figure 3.
The big oval represent the control perspective of the agent, with the agent's name in it, and the small ovals
correspond to the Abstraction and Presentation perspectives, respectively. The siraight lines represent
communication between the agents. Notice the hierarchy of the system. The superior level is constituted by
the Graph Editor System agent, representing the whole system. The presentation of this agents is usually
constituted by an icon, to allow the access to the whole application. The intermediate level is constituted by
agents representing the main window (Editor agent), containing the system main functionalities, the Edition
and Mnue agents, respectively, sub windows of the main window. The inferior level is contituted by the
elementary agents which cannot be decomposed further, the exit, arc and node buttons, respectively.

Q' Graph
Editor Syste

Application level. System's agent

System's windows and
subwindows agents

Widgets

Figure 3. Architecture of the Graph Editor System

The C++ implementation of the Presentation perspective of the the Edition agent, according to the PAC
framework specification given in 2.1, is shown in the Appendix. Notice that the list of events required in
the specification is present in the Presentation code.

The complete C++ implementation of the Edition Agent may be retrieved at the ISYS home
pages: http://anubis.ciens.ucv.ve/SPANISH/publicaciones97.html.

4. CONCLUSION

The specification of the PAC framework's abstract classes, described through this paper, aims to standardize
the elements of the PAC model, appearing in the definition of GUI agents, independently from the
application to be developed and from the object-oriented target language used to implement the application.
Moreover, this specification has been practically used as a guideline for implementation in projects on
multimethods .case environments developed at the ISYS Center [7], [8], [9], resulting very attractive for
modifying and extending the existing code and for separating works among programmers teams, easing the
overall control of the project. Finally, to experiment the flexibility of the framework with respect to
robustness and portability, its implementation in Java [14] is an undergoing work [10]. Moreover, at
present, we are studying the impact of the PAC approach on distributed applications.

5. REFERENCES
1. BUSCHMANN F., MEUNIER R., RHONERT H., SOMMERLAD P., STAL M. "Pattern-Oriented Software

Architecture. A System of Patterns", Jhon Wiley & Sons, 1996.

2 . COLLINS D., "Designing Object-Oriented User Interfaces", Benjamin/Cummings Publishing Company, Inc.
1995.

3 . COUTAZ J., “Developing Software for the User Interface”, Bass L., Coutaz J. Addison Wesley Cummings
Publishing Company (1991).

4 .GAMMA E., HELMR., JOHNSON R.. VLISSIDES J. "Design Patterns. Elements of Reusable Object-Oriented
Software" Addison Wesley Publishing Co., 1994.

5. GOLDBERG A., "Smalltalk-80 The Interactive Programming Environment", Addison-Wesley 1984.

6 . KRASNER G. E., POPE S.T. "A Cookbook for using the Model-View-Controller user-interface paradigm in
Smalltalk-80" Journal of Object-Oriented Programming 1(3), 1988.

7 .LOSAVIOF., MATTEO A. "A Method for User-Interface Development. To appear in Journal of Object Oriented
Programming, Dec. 1997.

8 . LOSAVIO F., MATTEO A. “Object-Oriented User-Interface Design Based on Agents Frameworks”, Proceedings
of the International Conference on Technology of Object-Oriented Languages and Systemas, TOOLS USA '96,
Santa Barbara, California, U.S.A., July-August 1996.

9 .LOSAVIO F., MARCHENA F., MATTEO A. “ Frameworks for Interactive Systems Development”, Research
Report, ISYS RI/01/97, No. 23, Caracas, January 1997.

10. BENCOMO N., LOSAVIO F., MARCHENA F., MATTEO A. “Java Implementation of User-Interface
Frameworks”, To appear in Proceedings of the International Conference on Technology of Object-Oriented
Languages and Systemas, TOOLS USA '97, Santa Barbara, California, U.S.A., July-August 1997.

11.PREEW. "Design Patterns for Object-Oriented Software Development", Addison Wesley 1994.

12 .RUMBAUGH ., BLAHA M., PREMERLANI W., EDDY F., LORENSEN W. “Object-Oriented Modeling and
Design” Prentice Hall International, Inc (1991).

13.STROUSTRUP B., "The C++ Programming Language", Second Edition, Addison-Wesley Publishing
Company, 1993.

14. SUN MICROSYSTEMS COMPUTER COMPANY , "The Java Language Specification" Release 1.0 Alpha 3.
Sun Microsystems Computer Company, May 1995.

APPENDIX

//EDITION’S PRESENTATION Widget Graphicomponent_top,

//pedition.h Graphicomponent_canvas;

#include "xt.h" /lobjects that encapsulate algorithms

#include "utility_edition.h" DrawNodeController DNodeC;

#include "apedition.h" DrawArcController DArcC;

#include "dnode_controller.h" SelectNodeController SNodeC;

#include "darc_controller.h" SelectArcController SArcC;

#include "snode_controller.h" ClearAreaController CAreaC;

#include "sarc_controller.h" /lcreate graphic contexis

#include "carea_controller.h" GC create_gc_image(Widget w);

const int radius=17; GC xs_create_xor_gc(Widget w);

/[Presentation perspective for Edition agent /finitialization of graphic data

/lthis class inherits from APEdition and XT void init_data(graphics_data *data);

class PEdition: APEdition,Xt { /ldetects when mouse button 1 is pushed
Display *dpy; void detect_event_buttonl_pushed(Widget
Window win; w, PEdition *_this,XEvent * event);
graphics_data data; //detects when mouse button 3 is pushed

798 Pixel black,white; void

detect_event_button3_pushed(Widget
w,PEdition *_this,XEvent * event);
//detects when mouse is moved holding a
/Ibutton
void detect_event_button_motion(Widget
w,PEdition *_this,XEvent * event);
//detects when a mouse's button is released
void detect_event_bution_released(Widget
w,PEdition *_this,XEvent * event);
Pixel get_pixel(Widget w,char *colorname);
//builds the interface
void draw_drawingarea(Widget form.
Widget menu);
/ldetects when expose events occur
void detect_event_refresh(Widget w PEdition
*_this,XmAnyCallbackStruct *call_data);
public:
//creates Presentation object
PEdition(CEdition *c);
//destroys Presentation object
~PEdition();
void update_place_constructor(tposition
pl.tposition p2,GC gc);
void update_node_selection(tposition pto, tposition
ptl);
void update_arc_selection(tposition pto,
tposition ptl);
void update_draw_node(tposition p,int 1,GC go);
void update_draw_arc(tposition s, tposition d,GC

void update_clear();

//notifies Control of the refresh event
void notify_event_refresh();

/Inotifies Control of the mouse's button 1
/Ipushed event

void notify_event_buttonl_pushed();
/Inotifies Control of the mouse's button 3
//pushed event

void notify_event_button3_pushed();
/Inotifies Control of the mouse's button
//released event

void notify_event_button_released();

/Ipedition.cc

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xutil.h>
#include <Xm/Xm.h>
#include <Xm/ScrolledW.h>
#include <Xm/ScrollBar.h>
#include <Xm/DrawingA.h>
#include "pedition.h"
/lcreates Presentation object
PEdition::PEdition(CEdition *c):APEdition(c)

{

/fbuilds the interface

draw_drawingarea(control
->com_{father_information_state_widget_form(),
control
->com_father_information_state_widget_menu());

//destroys Presentation object
PEdition::~PEdition()

//destroys interface
XtDestroyWidget(Graphicomponent_top);
¥

/lcteates a graphic context

GC PEdition::create_gc_image(Widget w)

{ XGCValues values;

GC ge;

Arg args(2]; .

XiSetArg(args[0], XtNforeground, &values.foreground);
XtSetArg(args[1], XtNbackground, &values.background);
XtGetValues(w, args, 2);

values.fill_style = FillSolid;

values.line_style = LineSolid;

values.line_width = 2;

values.function = GXcopy;

values.cap_style = CapButt;

values.join_style = JoinMiter;

gc = XCreateGC(XtDisplay(w), XtWindow(w), GCBackground |
GCForeground | GCFillStyle | GCLineStyle | GCLineWidth |
GCFunction | GCCapStyle | GCJoinStyle, &values);

return (gc);

/lcreates a graphic context

GC PEdition::xs_create_xor_gc(Widget w)
{ XGCValues values;

GC gg;

Arg args[2];

values.function = GXzxor;

KtSetArg(args[0], XiNforeground, &values.foreground);
XtSetArg(args[1], XtNbackground, &values.background):
XtGetValues(w, args, 2); > '
values.foreground = values.foreground A values.backor :
values fill_style = FillSolid: background:
values.line_style = LineOnOffDash;

values.join_style = JoinRound;

values.line_width = 2;

values.cap_style = CapButt;

gc = XCreateGC(XtDisplay(w), XtWindow(w),
GCFunctionlGCForeground/GCFillStylelGCLineStylelGCloinStyle!
GCLineWidthIGCCapStyle, &values);

return (gc);

/linitialization of graphic data

void PEdition::init_data(graphics_data *data)

{ Arg args[2];

data->gc = create_gc_image(Graphicomponeni_canvas);
data->xorge = xs_create_xor_gc(Graphicomponent_canvas);
KtSetArg(args[0], XtNforeground,

&data->foreground);
XtSetArg(args[1], XtNbackground,

&data->background);
XtGetValues(Graphicomponent_canvas, args, 2);

'

¥

void PEdition::update_draw_node(tposition p,int 1,GC gc)
{ static gc_pos gp;

8p-gc=gc;

gp.value=r;

gp-posl=p; .

//call to encapsulated algorithm
DNodeC.Algorithm(Graphicomponent_canvas,&gp); }
void Pedition::update_draw_arc(

tposition s,tposition d,GC ge)

{ static gc_pos gp;

8p-8C=8¢;

gp.posl=s;

gp.pos2=d;

/lcall to encapsulated algorithm
DArcC.Algorithm(Graphicomponent_canvas,&gp); }

void PEdition::update_arc_selection(tposition pto, tposition ptl)
{ XGCValues values;

GC go;

static gc_pos gp;

values.foreground = data.foreground ~ data.background;
values.fill_style = FillSolid;

values.function = GXcopy;

gp.gc = XCreateGC(dpy,
RootWindowOfScreen(XtScreen(Graphicomponent_canvas)),
GCForeground | GCFillStyle | GCFunction , &values);
gp.posl=pto;

gp.pos2=ptl;

/lcall to encapsulated algorithm
SArcC.Algorithm(Graphicomponent_canvas,&gp); }

void PEdition::update_node_selection(tposition pto, tposition

pt1)
{ XGCValues values;
GC gc;
static gc_pos gp;
values.foreground = data.foreground /A data.background;
values.fill_style = FillSolid;
values.function = GXcopy;
gp.gc = XCreateGC(dpy,
RootWindowOfScreen(X tScreen(Graphicomponent_canvas)),
GCForeground | GCFillStyle | GCFunction , &values);
gp.posl=pto;
gp.pos2=ptl;
/lcall to encapsulated algorithm
SNodeC.Algorithm(Graphicomponent_canvas,&gp); }
void PEdition::update_clear()
{ static gc_pos gp;
gp.posl.x=0;
gp.posl.y=0;
gp.pos2.x=2000;
gp.pos2.y=2000;
/lcall to encapsulated algorithm
CAreaC.Algorithm(Graphicomponent_canvas,&gp); }
void PEdition::detect_event_refresh(Widget w,PEdition
*_this, XmAnyCallbackStruct *call_data)
{ _this->notify_event_refresh(); } .
void PEdition::update_place_constructor(tposition pl,tposition
p2,GC gc)
{ if (control
_>observer_local_current_constructor()==NODE)
update_draw_node(p2,radius, gc);
else update_draw_arc(p1,p2,g0); }
//detects when mouse buiton 1 is pushed o
void PEdition::detect_event_buttonl_pushed(Widget w,PEdition
*_this,XEvent * event)
{ if (event->xbutton.button == Buttonl)

_this->data.ini.x = _this
->data.end.x=event->xbutton.x: f79@

_this->data.ini.y = _this
->data.end.y=event->xbutton.y;_this
->notify_event_buttonl_pushed();

_this->control
->notify_abstraction_active_button(event
->xbutton.button); }

¥
//detects when mouse button 3 is pushed
void PEdition::detect_event_button3_pushed(Widget w,PEdition
*_this,XEvent * event)
{ if (event->xbutton.button == Button3)
_this->data.ini.x = _this
->data.end.x=event->xbutton.x;
_this->data.ini.y = _this
->data.end.y=event->xbutton.y;
_this->notify_event_button3_pushed();
_this->control
->notify_abstraction_active_button(event
->xbutton.button);

//detects when mouse is moved holding 2 button
void PEdition::detect_event_button_motion(Widget w,PEdition
*_this,XEvent * event)
{ tposition pl,p2,p3;
if (_this->control->observer_active_button() == Button3)
{ pl.x=_this->data.ini.x;
pl.y=_this->data.ini.y;
p2.x=_this->data.end.x;
p2.y=_this->data.end.y;
p3.x=event->xbutton.x;
p3.y=event->xbutton.y;
_this->data.end.x = event->xbutton.x;
_this->data.end.y = event->xbutton.y;
_this->update_place_constructor(pl,p2,_this
->data.xorgc);
_this->update_place_constructor(p1,p3,_this
->data.xorge); }

//detects when a mouse's button is released
void PEdition::detect_event_button_released(Widget w,PEdition
*_this,XEvent * event)
{ _this->data.size.dx=_this->data.size.dy=34;
_this->notify_event_button_released(); }
Pixel PEdition::get_pixel(Widget w,char *colorname)
{ Display *dpy = XtDisplay(w);
int scr = DefaultScreen(dpy);
Colormap cmap = DefaultColormap(dpy, scr);
XColor color, ignore;
if (XAllocNamedColor(dpy, cmap, colorname, &color, &ignore)) {
XAllocColor(dpy, cmap, &color);
return(color.pixel); }
else
{ printf("!.. Advertencia: No se puede asignar el color %s ..!\n",
colorname);
return(BlackPixel(dpy, scr)); }

}

//builds the interface

void PEdition::draw_drawingarea(Widget form,Widget menu)

{ Arg args[10];

int n;

Colormap cmap;

XColor unused, color;

Pixel bg_color, fg_ret, top_shadow, bottom_shadow,
select_color;

n=0;

XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET);n++;
XtSetArg(args[n], XmNtopWidget,menu);n++;

XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);n++;
XtSetArg(args[n], XmNIleftAttachment,Xm

ATTACH_FORM);n++;

XtSetArg(args[n], XmNbottomA ttachment, Xm
ATTACH_FORM);n++;

XtSetArg(args[n], XmNscrollingPolicy,Xm

AUTOMATIC);n++;

XtSetArg(args[n], XmNscrollBarDisplayPolicy,

XmSTATIC);n++;

Graphicomponent_top =
XtCreateManagedWidget("sw",xmScrolledWindowWidgetClass,
form,args,n);
Graphicomponent_canvas=XtCreateManagedWidget("draw",
xmDrawingAreaWidgetClass,Graphicomponent_top,args,n);

dpy = XtDisplay(Graphicomponent_canvas);
XtVaGetValues(Graphicomponent_canvas, XmNcolormap, &cmap,

NULL);

XAllocNamedColor(dpy, cmap, "white", &color, &unused);
bg_color = color.pixel;
XmGetColors(XtScreen(Graphicomponent_canvas), cmap,
bg_color, &fg_ret, &top_shadow, &bottom_shadow,
&select_color);

n=0;

XiSetArg(args[n], XmNresizable, TRUE); n++;
XiSetArg(args[n], XtNwidth,2000); n++;

800

XtSetArg(args[n],XtNheight,2000); n-++;

XtSetArg(args[n], XmNbackground, bg_color); n-++;
XtSetArg(args[n], XmNtopShadowColor, top_shadow); n++;
XiSetArg(args[n], XmNbottomShadowColor, bottom_shadow);
n++;

XtSetArg(args[n], XmNselectColor, select_color); n++;
XtSetArg(args[n], XmNarmColor, select_color); n++;
XtSetArg(args[n], XmNborderColor, fg_ret); n++;
XtSetValues(Graphicomponent_canvas,args,n);
init_data(&data);

black = get_pixel(Graphicompoenent_canvas, "black");
xt_add_event_handler(Graphicomponent_canvas,
ButtonPressMask,FALSE,(XtEventHandler)
&detect_event_buttonl_pushed,(XtPointer) this);
xt_add_event_handler(Graphicomponent_canvas,
ButtonPressMask, FALSE,(XtEventHandler)
&detect_event_button3_pushed,(XtPointer) this);
xt_add_event_handler(Graphicomponent_canvas,
ButtonMotionMask,FALSE,(XtEventHandler)
&detect_event_button_motion,(XtPointer) this);
xt_add_event_handler(Graphicomponent_canvas,
ButtonReleaseMask,FALSE,(XtEventHandler)
&detect_event_button_released,(XtPointer) this);
xt_add_callback(Graphicomponent_canvas,XmNexposeCallback,
(XtCallbackProc) &detect_event_refresh,(XtPointer) this);
XtPopup(control
->com_father_information_state_widget_sheli(),XtGrabNone);
win=XtWindow(Graphicomponent_canvas); }

void PEdition::notify_event_refresh()

{ control->notify_abstraction_refresh(&data); }

void PEdition::notify_event_buttonl_pushed()

{ control

->notify_abstraction_buttonl_pushed(&data); }

void PEdition::notify_event_button3_pushed()

{ control

->notify_abstraction_button3_pushed(&data); }

void PEdition::notify_event_button_released()

{ control

->notify_abstraction_button_released(&data); }

Francis LOSAVIO received the Doctor degree in Computer Science in 1991 and a 3éme. Cycle Doctor
degree in Computer Science in 1985 from the Univ. Paris-Sud, Orsay, France. She also received a MSc
degree in Computer Science from the Univ. Simén Bolivar, Venezuela in 1983. At present, she is a Titular
Professor at the School of Computer Science, Faculty of Science, Univ. Ceniral de Venezuela and
coordinates the ISYS Research Center. Her research includes software engineering environments,
methodologies for software development, graphical user ionterfaces, software arhitectures, automaitic
program consiruction, formal specifications.

E-mail: flosavio@conicit.ve / @anubis.ciens.ucv.ve

Francisco MARCHENA received the Bachelor’s degree in Computer Science in 1997 from the
Universidad Central de Venezuela and is member of the ISYS Research Center, Faculty of Sciences,
Universidad Central de Venezuela. At present he coordinates the development of the OODEST (Object
Oriented DEsign Support environmenT) project at the ISYS Research Center. His research includes protocol
analyzers for local area networks and implementation of multiagent models for interactive applications.
e-mail: fmarchen@anubis.ciens.ucv.ve / @strix.ciens.ucv.ve

Alfredo MATTEO received the Doctor degree in Computer Science from the Univ. Paul Sabatier,
Toulouse, France in 198-. At present, he is an Aggregate Professor at the School of Computer Science,
Faculty of Science, Univ. Central de Venezuela and is member of the ISYS Research Center. His research
includes software engineering environments, methodologies for software development, formal specifications
and algorithmic complexity.

E-mail: amatteo@conicit.ve / @anubis.ciens.ucv.ve

801

